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Relation between coupled map lattices and kinetic Ising models
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A spatially one-dimensional coupled map lattice possessing the same symmetries as the Miller-Huse model
is introduced. Our model is studied analytically by means of a formal perturbation expansion which uses weak
coupling and the vicinity to a symmetry breaking bifurcation point. In parameter space four phases with
different ergodic behavior are observed. Although the coupling in the map lattice is diffusive, antiferromag-
netic ordering is predominant. Via coarse graining the deterministic model is mapped to a master equation
which establishes an equivalence between our system and a kinetic Ising model. Such an approach sheds some
light on the dependence of the transient behavior on the system size and the nature of the phase transitions.

PACS number~s!: 05.45.Ra, 05.50.1q
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I. INTRODUCTION

Since the middle of the 1970s investigation of determ
istic chaos has become one of the prominent fields of st
in science, especially in physics. A lot of knowledge h
been gained since that time, in particular for systems w
few degrees of freedom@1#, and a whole range of tools ha
been developed for the diagnostics of chaotic motion.
mention only Lyapunov exponents and fractal dimensions
the most popular quantities. Parallel to these developm
the question arose as to how one could treat systems
many degrees of freedom along these lines. Unfortunat
much less progress has been achieved in this direction. O
a few results are available and most of them are bound to
investigation of model systems. Within that context coup
map lattices~CMLs! were introduced at the end of the 198
as a widely studied model class@2,3#. In such models loca
chaos is generated by a chaotic map that is placed at eac
of a simple lattice. Spatial aspects are introduced by coup
these local units and special emphasis is on the limit of la
lattice size where the dynamics becomes high dimension

There is just one class of systems with many degree
freedom that is fairly well understood, namely, statistic
mechanics at and near thermal equilibrium. Unfortunate
the systems studied in the field of space-time chaos are o
far from equilibrium so that the tools of equilibrium statis
cal mechanics may fail. Nevertheless, reduction to the
evant degrees of freedom, sometimes called coarse grai
may be equally successful in both areas. By elimination
irrelevant degrees of freedom one maps the microscopic
terministic equation of motion to a stochastic model wh
the noise captures the irrelevant information. Such a conc
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well developed in equilibrium statistical mechanics, has a
been used in nonlinear dynamical systems; introductions
be found on the textbook level@4#. In a rigorous approach
coarse graining is performed by suitable partitions of
phase space and there are results for particular coupled
lattices available~cf. @5,6#!. Unfortunately, such schemes a
limited to some perturbative regimes and are technically
tremely difficult to apply. Hence, sometimes more physica
inspired coarse grainings are used@7#, relaxing the amount of
rigor somewhat.

The statistical methods just mentioned become espec
relevant in the study of phase transitions in CMLs@8#. Quali-
tative changes in the dynamical behavior may be related
phase-transition-like scenarios in the corresponding coa
grained description. Prominent examples of such phenom
occur in the models introduced by Sakaguchi@9# and Miller
and Huse@10#. To keep the paper self-contained and as
motivation for the construction of our model, we briefly r
view the basic features of the latter model.

In order to mimic a phase transition in a two-dimension
Ising model, the chaotic antisymmetric map depicted in F
1 was placed on a square lattice and coupled to its f

ry
; FIG. 1. Single site mapf of the Miller-Huse model. The inse
shows a typical pattern fore.ecrit ~white/blacka i j 561).
3675 © 2000 The American Physical Society
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nearest neighbors,

xi j
t11

ª~12e!f~xi j
t !1

e

4 (
k,I 561

f~xi 1k j11
t !. ~1!

On performing a coarse graining according to the sign of
phase space variables

a i j
t 5H 11 if xi j

t >0

21 if xi j
t ,0

, ~2!

numerical simulations indicate a phase transition if the c
pling strength exceeds a critical valueecrit'0.82~cf. Fig. 1!.
Extensive numerical simulations@11# indicate that the phas
transition is continuous. However, it is doubtful whether t
transition belongs to the Ising universality class, because
results for the critical exponents are inconclusive. In parti
lar, their values depend on whether the CML is updated s
chronously or asynchronously. One can summarize that
phase transition of the Miller-Huse model is still far fro
being understood, in particular since no quantitative desc
tion of the spin dynamics could be derived. In order to rea
some progress in this direction we here introduce and inv
tigate a slightly different model system with analytical me
ods.

Section II introduces our model as well as the setup of
perturbation expansion. For the latter purpose transitions
tween sets of a suitable partition are defined. These tra
tions are studied in detail in Sec. III. With these results,
bifurcation diagram of our model will be developed in Se
IV and analytical expressions for the bifurcation lines a
calculated in perturbation theory. Section V is devoted t
systematic coarse graining of the dynamics on the basi
the partition just mentioned. On that level the dynamics
described in terms of a master equation that corresponds
particular class of kinetic Ising models. It constitutes the
sis for the investigation of transient behavior in Sec. V
Finally, the main results of this work are summarized. T
appendixes are concerned with parts of the perturbation
pansion, but more details can be found in@12#.

II. THE MODEL

Let us first consider the single site map. It consists o
deformed antisymmetric tent mapf d , which is linear on
three subintervals of@21,1#,

f d~x!ªH 222x/a if xP@21,2a#
x/a if xP~2a,a!

22x/a if xP@a,1#,
~3!

whereaª1/(22d). Becausef d(1)5d, the parameterd de-
termines whether transitions between the intervals@21,0#

5..J(21) and @0,1#5..J(11) are possible. Note that th
Miller-Huse map is obtained as a special case,f5 f d521 .
The introduction ofa in Eq. ~3! ensures that the modulus o
the derivative off d is constant on the whole interval. Figur
2 shows the functionf d for small positive and negatived.
For d>0 the single site map has two coexisting attracto
the intervals@21,d# and @d,1#, whereas ford,0 only one
attractor, the interval@21,1#, is present.
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The CML that is studied in this article is defined on
one-dimensional lattice~chain! of length N. Nearest neigh-
bors are coupled in a standard ‘‘diffusive’’ way with period
boundary conditions,

Te,d :@21,11#N→@21,11#N,

@Te,d~X!# iª~12e! f d~xi !1
e

2
@ f d~xi 21!1 f d~xi 11!#.

~4!

The parametere denotes the coupling strength. Because
the single site map and the diffusive coupling, the CMLTe,d
has the symmetryTe,d(2x)52Te,d(x). Furthermore, trans-
lation invariance on the one-dimensional lattice holds,
cause periodic boundary conditions have been imposed.

Since we are going to perform a perturbation theory w
e,udu!1, we first consider the CML withe5d50. In this
case the model can be solved trivially. The nondeform
antisymmetric tent mapf 0 has the two attractorsJ(21)
5@21,0# andJ(11)5@0,1#. Therefore,N uncoupled maps
f 0 have 2N coexisting attractors, each one anN-dimensional
cube of edge length 1,

I aªJ~a1!3J~a2!3¯3J~aN!. ~5!

We distinguish these cubesI a by an N-dimensional index
vector a5(a1 ,a2 ,...,aN) wherea iP$21,11%. The natu-
ral measure on each cube is the Lebesgue measure. A
will see, these cubes become important building blocks
the perturbation theory and the starting point of a coa
grained description of the CMLTe,d .

From a dynamical system point of view we are main
interested in ergodic properties of the CML, i.e., the num
of coexisting attractors and their location for given sm
parameterse, d. An important observation is that in the pe
turbative regime a typical orbit stays for many iteratio
within a cubeI a before it possibly enters another cubeI b .
Therefore, in perturbation theory any attractor of the CM
Te,d is a union of cubesI a , if one neglects sets with volum
O(e,d). Hence, the dynamics is sufficiently characterized
transitionsI a→I b between cubes.

Of course we have to be more definite about what
mean by a transition. In order that a phase-space point ca
mapped from a cubeI a to a cubeI b (aÞb) the image of
the former has to intersect the latter. Hence theoverlap set

Oa,bªTe,d~ I a!ùI b ~6!

plays an important role. A necessary condition for a point
migrate fromI a to I b is a nonempty overlap setOa,b . Since
in perturbation theory the setTe,d(I a) is a weakly deformed

FIG. 2. Deformed antisymmetric tent mapf d .
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cube I a , the setOa,b can at most have a volume of siz
O(e,d). However, the condition on the overlap set is f
from being sufficient because one has to ensure that typ
orbits can reach this set upon their itinerary. For that purp
two additional conditions have to be imposed.

First, we have to ensure that points from the inner part1 of
I a reach the overlap set. For that reason we consider
preimages ofOa,b of various generation that are contained
I a :

Te,d
21~Oa,b!ª$xPI auTe,d~x!POa,b%,

Te,d
2k~Oa,b!ª$xPI auTe,d~x!PTe,d

2~k21!~Oa,b!%,

k52,3, . . . . ~7!

For some finitek the preimage setTe,d
2k(Oa,b) should inter-

sect the inner part ofI a , so that points from the inner part o
I a can reach the overlap setOa,b .2

The points of the setOa,b are near the surface of the cub
I b within a distance of orderO(e,d). The second condition
demands that points from a subset ofOa,b with finite Le-
besgue measure reach the inner part of the cubeI b directly
under further iteration. The two conditions for a transiti
I a→I b ensure that the transition is possible for a set of fin
Lebesgue measure that is located in the inner part ofI a .

III. TRANSITIONS IN PERTURBATION THEORY

In what follows we consider the CMLTe,d for arbitrary
but fixed lattice sizeN. We would like to know which tran-
sitions I a→I b are possible for given parameterse,d. In the
spirit of perturbation theory we confine ourselves to dom
nant transitions. Those are transitions where the cubesI a and
I b share an (N21)-dimensional surface. Then, the volum
of the overlap setOa,b can be greater by a factor 1/e or 1/udu
in comparison to the case without a common surface. C
sequently, theN-dimensional index vectorsa and b differ
only in one component, the transition indexa i . In such a
transition I a→I b the xi coordinate of the phase space or
$xt% changes its sign. Transitions of higher order in whi
two or more coordinates simultaneously change their s
will not be considered in this article, because their rates
smaller by a factor of the orderO(e,d) in comparison to the
dominant transitions.

In perturbation theory, for a dominant transition only t
neighboring indices of the transition index,a i 21 anda i 11 ,
are relevant, because of the nearest-neighbor interactio
the mapTe,d @cf. Eq. ~4!#. In addition, the influence of the
two neigboring coordinatesxi 21 andxi 11 on thexi coordi-

1For our perturbative treatment we define the inner part as the
of all xPI a that have at least a small fixed positive distanced from
the boundary, where the quantityd does not depend on the expa
sion parameterse andd.

2Since fore5d50 the natural measure on each cube is the
besgue measure, in the perturbative regime the mapTe,d distributes
the points of an orbit rather uniformly within a cubeI a . Therefore,
in determining the orbit dynamics it suffices to use topologi
methods such as the calculation of preimage sets.
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nate is predominant for a finite number of iterations, sin
interactions with lattice sites further away are suppressed
the small coupling strengthe. More precisely, within first-
order perturbation theory the overlap setsOa,b and their pre-
image sets can be approximated by the following prod
sets~cf. Appendix A!:

Oa,b5Oa i 21a ia i 11 ,b i 21b ib i 11

~3! 3I a1a2¯a i 22a i 12¯aN

~N23! ,

Te,d
2k~Oa,b!5@Te,d

~3!#2k~Oa i 21a ia i 11 ,b i 21b ib i 11

~3! !

3I a1a2¯a i 22a i 12¯aN

~N23! , k>1. ~8!

HereOa i 21a ia i 11,b i 21b ib i 11

(3) denotes a three-dimensional pr

jection of the full overlap set that contains the coordina
xi 21 , xi , andxi 11 , andTe,d

(3) denotes the map lattice forN
53. The (N23) remaining coordinates are contained in t
(N23)-dimensional cubeI a1a2¯a i 22a i 12¯aN

(N23) . Effectively,

we have herewith reduced the transition in a map lattice
sizeN to a transition in a map lattice of size 3, becauseN
23) coordinates play only a spectator role. Put differen
the CML Te,d already reaches its full complexity forN53, if
one stays in the perturbative regime.

For symmetry reasons one can identify three differ
types of transitionsI a→I b . In type ~a! the three indices
a i 21 , a i , anda i 11 are equal, e.g.,

I ...,11,11,11, . . .→I ...,11,21,11, . . . .

In type ~b! the two neighboring indicesa i 21 and a i 11 are
different from each other, e.g.,

I ...,21,11,11, . . .→I ...,21,21,11, . . . .

In type ~c! the neighboring indicesa i 21 and a i 11 differ
from the transition indexa i , e.g.,

I ...,11,21,11, . . .→I ...,11,11,11, . . . .

Transitions of type~c! are inverse to those of type~a!.
Because of the conditions mentioned in the last sect

transitions are possible only if the deformation is sm
enough,d,dcrit(e). Within perturbation theory we obtain
for the different critical values

type~a!:da50, type~b!: db52
2e

3
, type~c!: dc52

4e

3
.

~9!

One might wonder why transitions~b! and~c! do not appear
for negatived above the critical value. The main reason
that despite the existence of a nonempty overlap set, tra
tories do not reach this overlap since there exists a forbid
region in phase space called the ‘‘blind volume.’’ Points b
longing to the blind volume have no preimages themselv
The blind volume is nonempty, since the mapTe,d is not
subjective for finite couplinge. The actual calculation of
critical d values necessitates rather involved geometric c
structions in phase space, since one must determine th
cation of the preimage setsTe,d

2k(Oa,b) in I a . Hence, details
are deferred to Appendix B. The smaller the deformat
parameterd, the more transitions become possible as can
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guessed from the geometry of the map~cf. Fig. 2!. On the
other hand, increasing coupling constante inhibits transi-
tions, since eventually only the transition of type~a! remains
feasible for fixed negatived. Such an observation someho
contradicts intuitive reasoning about a ‘‘coupling’’ of lattic
sites. The inhibition effect for transitions is caused by t
existence of a ‘‘blind volume’’ in the cubeI a , which grows
with e ~cf. Appendix B!.

At this stage some remarks about the accuracy of
perturbative approach seem to be in order. Since we neg
transitions of higher order, our arguments are not rigorous
fact, for a real proof the complete absence of such transit
must be shown. For the case of two coupled maps,N52,
such a step can be easily supplemented~cf. Appendix C! and
we infer that one might be able to perform similar but mo
involved computations in higher-dimensional cases too. N
ertheless, even if these transitions are mathematically
sible their effect may be small, e.g., taking a time scale
gument into account.

IV. THE BIFURCATION SCENARIO

Equation~9! determines four regions in the~e,d! param-
eter plane where different transitions are possible~cf. Fig. 3!.
In crossing these lines a bifurcation occurs. Between dif
ent regions the number of coexisting attractors and their
cations change. Determining attractors in the strict ma
ematical sense just from the knowledge of the domin
transitions faces some problems, however. For, neglec
sets with volumeO(e,d) a union of cubesA, which an orbit
cannot leave through a dominant transition, is a candidate
attractor. But an orbit can possibly escape from this
through a transition of higher order in perturbation theo
Then the setA would not be an attractor in a strict math
ematical sense. However, one can put forward the follow
time-scale argument: in perturbation theory transitio
through which an orbit can leaveA occur on a rather large
time scale in comparison to the relatively fast dominant tr
sitions through which the orbit is pulled back to the setA
again. Because of this intermittent dynamics, the setA is a
core region of a possibly bigger attractor, i.e., the setsA are
the carriers of most of the natural measure of these attrac
For brevity we will call these setsA ‘‘attractors’’ in the fol-
lowing.

If we neglect sets with volumeO(e,d) we can identify an
attractorA with a union of cubesI a .

Region 1 (d>0). No transitionI a→I b is possible. There-

FIG. 3. Diagrammatic view of the bifurcation diagram for th
CML Te,d according to Eq.~9!. Numbers in the four paramete
regions refer to the text. Gray shading indicates the type of coup
in the corresponding kinetic Ising model, antiferromagnetic~light!
or ferromagnetic~dark! ~cf. Sec. V!.
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fore, each cubeI a is an attractor so that there are 2N coex-
isting attractors.

Region 2 (22e/3<d,0). Only transition type~a! is al-
lowed. Hence, cubesI a are attractors such thata does not
contain three successive ‘‘11’’ or ‘‘ 21’’ values. With a
combinatorial argument one can show that for long cha
(N@1) the number of coexisting attractors increases l
@(11A5)/2#N.

Region 3 (24e/3<d,22e/3). To determine the attractor
in this region, it seems necessary to anticipate the co
graining of the CMLTe,d , which will be discussed system
atically in Sec. V. Analogously to Eq.~2!, we can view the
index vectora of a cubeI a as a spin chain of lengthN,
where11 and21 are the possible spin states on each latt
site. In this way the three transition types~a!, ~b!, and ~c!
translate into three different kinds of spin flips. For each s
chain one can define defects in the same way as in the
ferromagnetic Ising model. A defect~‘‘1’’ ! occurs if two
neighboring spins are aligned, and no defect is present if
spins point in opposite directions. Then, the spin flips j
mentioned translate into a dynamics of defects. In type~a!
transitions, two adjacent defects annihilate each other, e

spin chain a: ¯11,11,11,̄ →¯11,21,11,̄ ,

defects in a: ...1, 1,...→...0, 0,... .

In type ~b! transitions, one defect diffuses to a neighbori
lattice site, e.g.,

spin chain a: ¯11,1121,̄ →¯11,21,21,̄ ,

defects in a: ...1, 0,...→...0, 1,... .

In type ~c! transitions, two adjacent defects are genera
simultaneously, e.g.,

spin chain a: ¯11,21,11,̄ →¯11,11,11,̄ ,

defects in a: ...0, 0,...→...1, 1,... .

For determination of the attractors in the present param
region we consider an orbit$xt% of the CML that performs
successive transitionsI a→I b . Each transition changes th
corresponding spin chaina and its defects. Since transition
of type ~c! are forbidden, defects can diffuse and annihila
in pairs only, and the number of defects decreases monot
cally.

If the size of the systemN is even, the chain contains a
even number of defects. An orbit$xt% migrates between
cubesI a until all defects have annihilated each other. The
the orbit cannot execute any further transitions of type~a! or
~b!. Therefore, there are two attractors, the cub
I (11,21,11,21,...,21,11,21) and I (21,11,21,11,...,11,21,11) . Ex-
tensive numerical simulations indicate that forN even, each
cube I (11,21,11,21,...,21,11,21) and I (21,11,21,11,...,11,21,11)
constitutes an attractor in the strict sense, i.e.,
d.24e/3 no additional transition of higher-order perturb
tion theory is present~cf. also Appendix C!.

For N odd, the number of defects ina is odd. Conse-
quently, at the end of the transient dynamics one defect
mains. Since the defect can change its location via a tra

g
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tion of type~b!, the attractor is the union of all 2N cubesI a

for which a contains a single ‘‘11 11’’ or ‘‘ 2 1 21’’
sequence.

Since in both cases the ratio of the volume of the attrac
to the volume of its basin of attraction becomes very sm
for N@1 one expects long transients to occur. Section V
devoted to a more detailed study of the transient dynam
Our argument has used the assumption that different tra
tions are not correlated. We will come back to this proble
in the next section.

Region 4 (d,24e/3). All three transition types are pos
sible. Therefore, an orbit$xt% can visit every cubeI a , so that
there emerges one attractor that encompasses all cubes

V. COARSE GRAINING OF THE CML

In coarse graining the CMLTe,d , one passes from orbit
$xt, t50,1,2, . . . % in phase space to symbol or spin chai
$at, t50,1,2, . . . %. The spin chainat just indicates the cube
that contains the phase-space pointxt at time t @cf. Eq. ~2!#.
If an orbit of the CML performs a transitionI a→I b , the
state of the spin chain changes froma to b. Since in pertur-
bation theory an orbit typically circulates for many iteratio
within a cubeI a , the sequence$at, t50,1,2, . . . % has a con-
stant value for a long time before a spin flip occurs. Alt
gether, the CML is described by astochasticspin dynamics.
First we argue that the spin dynamics is Markovian for
following reasons.

~1! Two successive transitionsI a→I b andI b→I g are un-
correlated. In the perturbative regime an orbit perform
highly chaotic motion within the cubeI b for many iterations
before the transition to the cubeI g occurs. Therefore, the
memory of the preceding transitionI a→I b is lost.

~2! A transitionI a→I b is equally probable for each itera
tion step. For a transition the orbit pointxt must hit a char-
acteristic set in the inner part of the cubeI a which consists of
preimages of the overlapOa,b . During its stay within the
cubeI a the orbit is distributed uniformly withinI a , since for
e5d50 the natural measure onI a is the Lebesgue measur
Consequently, the probability for the orbit to hit the chara
teristic set is independent of time.

Since the spin dynamics is Markovian at least appro
mately, the probabilitypa(t) that the spin chain is in statea
at timet obeys a master equation with transition probabilit
w(bua) for a spin flipa→b,

pa~ t11!5pa~ t !1 (
bÞa

@w~aub!pb~ t !2w~bua!pa~ t !#.

~10!

In perturbation theory three types of spin flips occur.
already stated above, only a single spin flips during the
ementary processa→b. From the study of the underlying
CML Te,d one can infer the following properties of the tra
sition probabilitiesw(bua).

~1! Because of the nearest-neighbor coupling in Eq.~4!
and the direct product property~8! in the perturbative re-
gime, the transition probabilitiesw(bua) depend on the three
neighboring spins only,

w~bua!5w~3!~a i 21b ia i 11ua i 21a ia i 11!, ~11!
r
ll
s
s.
si-

-

e

a

-

i-

s

l-

wherea i denotes the transition index. Hence the spin int
action is local.

~2! According to Eq. ~11! the transition probabilities
w(bua) do not depend onN. Therefore, they can be dete
mined for small systems, e.g.,N53.

~3! Transitions of the three different types have probab
ties wa , wb , and wc , respectively, which depend on th
parameterse, d. If d is greater than the corresponding critic
value in Eq.~9!, the respective transition probability strictl
vanishes. On loweringd, the transition probability increase
monotonically, as can be shown by a rather subtle argum
that uses the monotonic growth of the overlap setOa,b .

The dynamics resulting from the master equation~10! is
almost trivial in parameter regions 1 and 2, since at mos
spin flip of type ~a! is possible. Regions 3 and 4 are mo
interesting, because at least two different spin flips occ
Since we are mainly interested in large systems, we con
ourselves toN even in what follows.

In region 3 spin flips of types~a! and ~b! are
possible. On the coarse-grained level the attract
I (11,21,11,21,...,21,11,21) and I (21,11,21,11,...,11,21,11) are
viewed as the two ground states of the antiferromagn
Ising model. Hence, the ergodic dynamics of the CMLTe,d
corresponds to an antiferromagnetic Ising model at zero t
perature. In parameter region 4 all three spin flips are p
sible. The~unique! stationary distribution of the master equ
tion can be calculated with the ansatz that the weight of e
statea solely depends on the number of defects. The res

pa
stat5cS wc

wa
D S i 51

N a ia i 11/4

5
1

Z
expS bJ(

i 51

N

a ia i 11D ~12!

clearly can be cast into the form of a canonical distributi
for a nearest neighbor coupled Ising chain. Here,c and Z
denote the normalization constants and for the tempera
the relation

bJ5 1
4 lnS wc

wa
D ~13!

follows. TakingJ with modulus 1 the temperature depen
on the ratio of the transition probabilities for generation a
annihilation of two defects. It is finite throughout region
Ferromagnetic coupling,J511, is obtained for (wc /wa)
.1, whereas in the opposite case (wc /wa),1 antiferromag-
netic coupling,J521, follows. Both cases are realized
the present parameter region, as can be seen in Fig. 3. H
the transition probabilitieswa andwc were obtained numeri-
cally by analyzing the transitions of a very long orbit of th
CML with N53. Finally, it is easy to show that the station
ary distribution~12! of Eq. ~10! obeys detailed balance:

w~bua!pa
stat5w~aub!pb

stat,

although the underlying CML describes a nonequilibriu
process on the microscopic level.

VI. TRANSIENT DYNAMICS OF THE CML

As mentioned above, the transient dynamics of
CML is most interesting in parameter region 3 f
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which the attractors I (11,21,11,21,...,21,11,21) and
I (21,11,21,11,...,11,21,11) have large basins of attraction fo
largeN. The mean transient timêT& can be determined by
averaging the time until an orbit reaches one of the two
tractors over many random initial conditions, i.e., initial co
ditions distributed according to the Lebesgue measure.
numerical simulation indicates a quadratic increase with
system size,

~T!}N2 ~N@1!. ~14!

Such a law can be understood from the coarse-grained p
of view. In parameter region 3 the spin flips of types~a! and
~b! are allowed, which cause the annihilation of two defe
and the diffusion of one defect, respectively. Overall, t
transient dynamics of the CML corresponds to a relaxat
process toward one of the two ground states. Since diffus
is important for the relaxation the time scale grows with t
second power of the length scale, i.e., the system size.

To be more definite and in order to derive Eq.~14! for-
mally, we recall that the spin dynamics induced by the m
lattice constitutes akinetic Ising modelwith local spin flips.
Models of this type have been introduced by Glauber in
celebrated article@13# ~see also@14#!. So the coarse-graine
dynamics of the CMLTe,d belongs to a well-studied class o
models. For the case of zero temperature, i.e.,wc50, an
exact analytical solution is available if an additional relati
for the two remaining transition probabilities is imposed:

wa52wb . ~15!

Such a condition holds only on a subset of parameter reg
3, namely, on a line ofe,d values. One can show with th
help of results for the temporal evolution of correlation fun
tions that the mean numberN of defects in the spin chain
obeys

^N~ t !&;
1

A8pwb

N

At
, t@1. ~16!

If one changes the system size fromN to kN the timet has to
be scaled by a factork2 in order to reach the same number
defects. Since the mean transient time^T& determines the
scale for the annihilation of all defects, the scale argum
implies relation~14!.

When one relaxes condition~15! between transition prob
abilities the quadratic growth of the transient time withN in
Eq. ~14! still holds as numerical simulations indicate. Su
an observation is in accordance with the theory of dynam
critical phenomena@15#. The latter implies universal scalin
laws for relaxation phenomena at the critical point. At ze
temperature the dynamics of a one-dimensional kinetic Is
model is critical and the decay of defects is governed by
dynamical critical exponentz,

^N~ t !&;
N

t1/z . ~17!

z equals 2 for kinetic Ising models where the order param
is not conserved@15,16#. Consequently, Eq.~14! holds for a
large set of parameter values in region 3.
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VII. SUMMARY

We have introduced a coupled map lattice which was c
structed in analogy to the Miller-Huse model. By a perturb
tion expansion for weak coupling and in the vicinity of
symmetry-breaking bifurcation of the single site map, no
trivial dynamical behavior has been investigated. Our
proach was based on analyzing the geometric propertie
phase space. Transitions between certain cubes that ar
building blocks of a coarse-grained description have b
computed. A global bifurcation of the dynamics occurs if
transition becomes allowed or forbidden by a change of
parameters. Four parameter regions with different ergo
behavior could be identified. As a surprising and counter
tuitive feature of our map lattice, we mention that increas
the spatial coupling inhibits transitions and stabilizes sin
cubes as attractors. As a consequence, the coupling
somehow antiferromagnetically on a coarse-grained leve

When we perform a coarse graining of the map lattice
resulting symbol or spin dynamics becomes a kinetic Is
model. We have been able to identify parameter regi
where our dynamical system can be mapped to a finite t
perature nearest-neighbor coupled Ising chain. Dependin
the original parameters of the system, ferromagnetic or a
ferromagnetic coupling can be realized, but the orde
phase at zero temperature is always in the antiferromagn
regime. The coarse-grained viewpoint also sheds some
on the transient dynamics of the map lattice since the tr
sients correspond to a relaxation process in the kinetic Is
model. Therefore, the transient behavior of the CML is
lated to a nonequilibrium process of statistical physics.

Within our approach we have successfully linked the d
namics of a coupled map lattice to properties of a kine
Ising model on analytical grounds. Of course our approac
not mathematically rigorous, but we have good indicatio
that the results are valid at least in the perturbative regi
Comparison with numerical simulations shows that the le
ing order of perturbation theory is a good description
parameter valuese, udu&531022.

For further studies the adaptation of the method
coupled maps on a two-dimensional lattice seems desira
since here also finite temperature phase transitions are
sible. This would constitute a further step in the understa
ing of phase transitions in coupled map lattices as exem
fied by the Miller-Huse model.

APPENDIX A

We want to derive Eq.~8! for symbol sequencesa, b
with a j5b j for j Þ i and a iÞb i . First, we recall that the
single site mapf d is affine on the four intervals~cf. Fig. 2!:

K~22!ª@21,2a#, K~21!ª@2a,0#,

K~1!ª@0,a#, K~2!ª@a,1#. ~A1!

Consequently, the mapTe,d is affine on the 4N cuboids,

SgªK~g1!3K~g2!3¯3K~gN!,

gª~g2 ,g2 ,...,gN! with g iP$22,21,1112%.
~A2!
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Each cubeI a contains 2N cuboidsSg . The image of a cuboid
underTe,d is a parallelepiped,

PgªTe,d~Sg!, ~A3!

which is a weakly deformed cubeI a for Sg,I a , because
Te5d50(Sg)5I a holds and we are in the perturbative regim
e,udu!1. The distances between the corners ofPg and ofI a

are of the orderO(e,d).
The overlap setOa,b as defined in Eq.~6! then reads

Oa,b5 ø
$g u Sg,I a%

~PgùI b!. ~A4!

The intersection of a parallelepipedPg with I b can be writ-
ten as

PgùI b5H Te,d~x!U xPSg `)
j 51

N

u„b j@Te,d~x!# j…51J ,

~A5!

whereu(x) denotes the Heaviside function.
Sinceb j5a j for j Þ i we have

u„b j@Te,d~x!# j…51 ~A6!

providedxj has at least a distance of orderO(e,d) from the
end points of the intervalK(g j ). Therefore, the set~A5! can
be approximated by

PgùI b5$Te,d~x!uxPSg `u„b i@Te,d~x!# i…51% ~A7!

in leading order of perturbation theory. The remaini
Heaviside function in Eq.~A7! only depends on the coord
natesxi 21 , xi , andxi 11 because of the local coupling of th
CML Te,d . Therefore, and sincePg is a weakly deformed
cubeI a , we obtain in the same order of approximation

PgùI b5$Te,d
~3!~x~3!!ux~3!PSg i 21g ig i 11

~3!

`u„b i@Te,d
~3!~x~3!!# i…51%3I a1a2¯a i 22a i 12¯aN

~N23!

5~Pg i 21g ig i 11

~3! ùI b i 21b ib i 11

~3! !3I a1a2¯a i 22a i 12¯aN

~N23! .

~A8!

Here the superscript indicates that the quantities
determined by a map lattice of sizeN53 with
x(3)5(xi 21 ,xi ,xi 11). The (N23)-dimensional cube
I a1a2¯a i 22a i 12¯aN

(N23) takes the remaining coordinatesxj with

j ¹$ i 21,i ,i 11% into account.
If one approximates the mapTe,d by the simplified map

@ T̃e,d~x!# i5~12e! f d~xi !1
e

2
@ f d~xi 21!1 f d~xi 11!#,

@ T̃e,d~x!# j5 f d~xj !, ; j Þ i , ~A9!

one arrives at the result~A8! at once. One can use the sim
plified mapT̃e,d for the calculation of the preimage setsTe,d

2k

(Oa,b) in leading-order perturbation theory. SinceT̃e,d
couples only the coordinatesxi 21 , xi , andxi 11 , in this ap-
proximation also the preimage setsTe,d

2k (Oa,b) have the
re

structure of a direct product in Eq.~8!. Finally, it can be
easily shown that the blind volumeBa of the cubeI a can
also be approximated by a direct product of the form as
Eq. ~8!.

APPENDIX B

In order to illustrate the main steps for the calculation
the critical valuesdcrit(e) we focus on the caseN52 and the
transitionI 11→I 21 . Generalizations toN.2 and different
transitions are almost obvious, but require some tedi
though elementary computations@12#.

For calculating the overlap setO21,11 we introduce the
following shorthand notation for the indices of the rectang
in Eq. ~A2!:

SiªS221, S2ªS222, S3ªS211, S45S212.
~B1!

With the parallelogramPiªTe,d(Si) the overlap set~A4!
reads

O21,115 ø
i 51

4

~PiùI 11!. ~B2!

Within first order P1ùI 11 and P2ùI 11 as well as
P3ùI 11 and P4ùI 11 are equal to each other.P3 and the
intersectionP3ùI 11 are shown in Fig. 4. The area of th
latter triangular set ise/2 in first order. The intersection
P1ùI 11 is obtained by shifting the just mentioned triang
by an amount2d.

The preimage set of the overlap,Te,d
21 (O21,11), is dis-

played in Fig. 5 where we restrict the parameter range
22e,d,0 for simplicity. For calculating preimages o
higher order the so called ‘‘blind area’’B21 comes into
play, i.e., the set of points inI 21 that do not have preimage
with respect to the mapTe,d . The components ofTe,d

21

(O21,11), in S1 andS2 are contained in the subsetT of the
blind area.B21 ~cf. Fig. 5!. In first order the width of the se
T is given by the expression

bT~x2!5e1ex2 , x2P@0,1#. ~B3!

For convenience in calculating preimages of higher or
we first concentrate on the right rectanglesS3 and S4 . De-
fining the generations of orderk by

FIG. 4. ParallelogramP35Te,d(S3) and its intersection with the
squareI 11 .
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G~1!
ªTe,d

21~O21,11!ù~S3øS4!,

G~k!
ª$xP~S3øS4!uTe,d~x!PG~k21!%, k52,3, . . . ,

~B4!

Fig. 6 reveals a beautiful recursive structure of these sets
order to describe this structure analytically we remark that
to first order it is sufficient to compute preimages with r
spect to a simplified map@cf. Eq. ~A9!#

@ T̃e,d~x!#152x11e f 0~x2!,

@ T̃e,d~x!#25 f 0~x2!. ~B5!

Then the following properties of the generationsG(k), which
are inherent in Fig. 6, are easily obtained.~1! The first gen-
erationG(1) consists of two triangles with vertices$~0, 0!, ~0,
1/2!, (2e/2,1/2)} and{[(0, 1!, ~0, 1/2!, (2e/2,1/2)]}, re-
spectively.~2! A generationG(k) encompasses 2k triangles,
each of them having the same area. The area shrinks
factor 4 if one passes fromG(k21) to G(k). ~3! Two neigh-
boring triangles of the same generation share a corner
side with length of ordere. ~4! The unionSG

(k)
ªøn51

k G(n) is
a simply connected set.

To determine the boundary ofSG
(k) we consider its heigh

function

R~k!~x2!ª inf$x1u~x1 ,x2!PSG
~k!%. ~B6!

SinceR(k11) is mapped onR(k) by the simplified mapT̃e we
get the representation

FIG. 5. Preimage setTe,d
21 (O21,11) and its four components in

the rectanglesSi (22e,d,0). Additionally, the blind areaB21

and its subsetT @cf. Eq. ~B3!# are displayed in gray.

FIG. 6. The first three generationsG(k)(H (k)) near the right
~left! edge ofI 21 .
In
p
-

a

a

R~k!~x2!52e(
i 51

k f 0
i ~x2!

2i , x2P@0,1#. ~B7!

For k odd these curves admit 2(k21)/2 absolute extrema at

xminPH 1

2 S 11 (
j 51

~k21!/2
i j

4 j DU i jP$21,11%,

j 51,2, . . . ,~k21!/2J ~B8!

with height

R~k!~xmin!52
e

2 (
i 50

~k21!/2
1

4i . ~B9!

In the limit k→` the setSG
` has a fractal boundary, since it

construction is analogous to the famous Koch’s curve@17#.
The thickness of the setSG

` follows easily from Eq.~B9!,

h~SG
` !ªsup$ux1uuxPSG

`%5
2e

3
. ~B10!

A generationG(k) has preimagesG(k11) not only in the
right rectanglesS3 andS4 , but also in the left rectanglesS1
andS2 ~cf. Fig. 6!,

H ~1!
ªTe,d

21~O21,11!ù~S1ùS2!,

H ~k!
ª$xP~S1ùS2!uTe,d~x!PG~k21!%, k52,3, . . . .

~B11!

To reveal the relation betweenG(k) andH (k) analytically we
just note that for a pointyPG(k21), Eqs. ~B4! and ~B11!
imply that

Te,d~x!5Te,d~x8!5yPG~k21!, xPG~k!,x8PH ~k!.

Then to first order

x181152d/22x1 , x285x2 ~B12!

follows. Hence, the setH (k) is obtained fromG(k) by a re-
flection and an additional offset of2d/2 ~cf. Fig. 6!. The
same property follows, of course, for the limitsSH

` andSG
` .

If

SH
`,B21 ~B13!

holds, no further preimages of the overlap setO21,11 ap-
pear, and the unionSG

`øSH
` encompasses all preimage

Consequently, the transitionI 21→I 11 is not possible, be-
cause all preimages of the overlap set are located nea
edge ofI 21 . Therefore, condition~B13! gives the clue for
the determination ofdcrit(e).

According to Eqs.~B12! and ~B10! the thickness ofSH
`

reads

h~SH
` !ªsup$11x1uxPSH

`%52
d

2
1

2e

3
. ~B14!
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At the critical valuedcrit(e) one peak at the boundary wit
maximal height collides with the right border of the s
T,B21 ~cf. Fig. 7!. Since the boundary of the blind are
according to Eq.~B3! has a finite slope, the peak with th
smallest x2 coordinate crosses the right boundary ofT
first. This can be shown rigorously with the inequality

sup$x1u~x1 ,x2!PSH
`%<sup$x1u~x1,1/3!PSH

`%1e„x22 1
3 ….

According to Eq.~B8! this peak is located atx251/3. Then
Eqs.~B14! and ~B3! yield

2
3 e2

dcrit~e!

2
5h~SH

` !5bT~x251/3!5 4
3 e ~B15!

and consequently we arrive at

dcrit~e!52 4
3 e. ~B16!

In order to show that the transitionI 21→I 11 is possible
for d,dcrit(e) the two conditions mentioned at the end
Sec. II have to be checked. SinceSH

` \B21 is nonempty for
d,dcrit(e), there exists an open neighborhood of (x1 ,x2)

5(21,1
3 ) which is contained within the preimage setTe,d

2k0

(O21,11) for a particular valuek0 . The next preimages ar
located near~21/2, 1/6! and~21/2, 5/6! and hence enter th
inner part of the squareI 21 . For higher generations agai
four preimages exist. Therefore, it is plausible—and
more intricate considerations of@12# confirm it—that the set
øk50

` Te,d
2k (O21,11) has a substantial Lebesgue measu

For the second transition criterion we have to check whe
the points that are mapped into the overlapO21,11 can
migrate into the inner part ofI 11 under further iteration. A
point xPO21,11 has a positivex1 coordinate of order
O(e). If one considers the evolution of thex1 coordinate@cf.
Eq. ~B5!#, its value grows for most pointsxPO21,11 under
further iteration, until it reaches a value of order 1. The
fore, the iterates reach the inner part ofI 11 after a finite
number of steps.

In conclusion, the transitionI 21→I 11 becomes possible
for d,dcrit(e). Computation for other transitions or a CM
with N53 follows the same lines. We stress that the m
steps consist in the calculation of images and preimage
overlap sets. The location of the preimage sets relative to

FIG. 7. Diagrammatic view of the setSH
` and the subse

T,B21 of the blind volume ford,dcrit(e).
e

.
er

-

n
of
he

blind volume determines whether all preimages of the ov
lap set are located only near the edge of the cube. Co
quently, the existence of the blind volume influences the
merical value ofdcrit(e) significantly.

APPENDIX C

In this appendix we would like to show that forN52 the
cubesI 21 andI 12 contain attractors in the strict mathema
cal sense, ifd.24e/3. Because of symmetry we can co
centrate on the cubeI 21 . In Appendix B we have shown
that the ~dominant! transitions I 21→I 11 and I 21→I 22

are forbidden, as long asd.dcrit'24e/3. What remains to
be done is to show that the off diagonal transitionI 21

→I 12 also does not appear.
If d,0 there exists a nonempty overlap set. Consider

the four rectangles inI 21 on which the CMLTe,d is linear
@cf. Eq. ~A2!#, only the image of the rectangleS222ª@21,
2a#3@a,1# intersects the squareI 12 for d,0.

Figure 8 displays this situation where the parallelogr
P2225Te,d(S222) and the overlap set

O21,125P222ùI 12 ~C1!

are shown. The overlap set has extension' 2d in the direc-
tions of both coordinate axes and hence an area'd2. Note
that this area is a factor of the orderO(e,d) smaller than
those of the overlap setsO21,11 andO21,22 , which be-
long to perturbatively dominant transitions.

The overlap set~C1! alone does not ensure a transitio
I 21→I 12 . In fact we show that phase-space trajectories
not reach this set, so that the transition does not app
Since we are considering a map with a finite couplinge
.0, trajectories do not fill the whole phase space@21,1#2

but only the subsetTe,d(@21,1#2),@21,1#2. In particular,
points close to the upper left corner ofI 21 are not visited.
This forbidden domain, previously called the blind volum
constitutes the reason why the off-diagonal transition d
not appear even beyond the perturbation theory.

To put the argument on a formal level, we construct t
preimage sets of the overlap set within the squareI 21 . The
first generation set,Te,d

21 (O21,12), is located near the cor
ner ~21, 1! of I 21 and has sides of length'2d/2 ~cf. Fig.
8!. As also shown in this figure, the blind areaB21 of the

FIG. 8. Overlap setO21,12 and its preimageTe,d
21(O21,12).



it

s
e
t

rt

or

nse
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squareI 21 is also located there and contains a square w
side length 2e. Therefore, the preimage setTe,d

21 (O21,12),
is contained in the blind area, as long asd.24e. Hence in
this parameter regime the overlap set has no preimage
Te,d

2k (O21,12), with k>2, because points belonging to th
blind area have no preimages themselves. In particular,
preimages of the overlap set do not intersect the inner pa
m-
h

ets

he
of

the squareI 21 , so that one criterion for the transitionI 21

→I 12 is not obeyed and the transition is impossible f
d.24e.

Summarizing, none of the transitionsI 21→I a with a
P$22,11,12% are possible ford.dcrit'24e/3. There-
fore, in this parameter region attractors in the strict se
reside within the squaresI 21 and I 12 .
a
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