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Relation between coupled map lattices and kinetic Ising models
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A spatially one-dimensional coupled map lattice possessing the same symmetries as the Miller-Huse model
is introduced. Our model is studied analytically by means of a formal perturbation expansion which uses weak
coupling and the vicinity to a symmetry breaking bifurcation point. In parameter space four phases with
different ergodic behavior are observed. Although the coupling in the map lattice is diffusive, antiferromag-
netic ordering is predominant. Via coarse graining the deterministic model is mapped to a master equation
which establishes an equivalence between our system and a kinetic Ising model. Such an approach sheds some
light on the dependence of the transient behavior on the system size and the nature of the phase transitions.

PACS numbgs): 05.45.Ra, 05.56:q

[. INTRODUCTION well developed in equilibrium statistical mechanics, has also
been used in nonlinear dynamical systems; introductions can
Since the middle of the 1970s investigation of determin-be found on the textbook levg#]. In a rigorous approach,
istic chaos has become one of the prominent fields of studgoarse graining is performed by suitable partitions of the
in science, especially in physics. A lot of knowledge hasPhase space and there are results for particular coupled map
been gained since that time, in particular for systems witHattices availablécf. [5,6]). Unfortunately, such schemes are
few degrees of freedoifl], and a whole range of tools has limited to some perturbative regimes apd are technical.ly ex-
been developed for the diagnostics of chaotic motion. wéremely difficult to apply. Hence, sometimes more physically

mention only Lyapunov exponents and fractal dimensions af'SPired coarse grainings are ug&g relaxing the amount of

the most popular quantities. Parallel to these developmenfddOr somewhat. _ _ _
the question arose as to how one could treat systems with The statistical methods just mentioned become especially

many degrees of freedom along these lines. Unfortunatelyf€/évant in the study of phase transitions in CMB$ Quali-
much less progress has been achieved in this direction. Onftive changes in the dynamical behavior may be related to
a few results are available and most of them are bound to thehase-transition-like scenarios in the corresponding coarse-
investigation of model systems. Within that context couplecdrained description. Prominent examples of such phenomena
map lattices CMLs) were introduced at the end of the 1980s OCCUr in the models introduced by Sakagudiiand Miller
as a widely studied model clag,3]. In such models local and Huse[10]. To keep the paper self-contained and as a
chaos is generated by a chaotic map that is placed at each Smé)twatlon fo_r the construction of our model, we briefly re-
of a simple lattice. Spatial aspects are introduced by couplinyiéW the basic features of the latter model. , ,
these local units and special emphasis is on the limit of large N Order to mimic a phase transition in a two-dimensional
lattice size where the dynamics becomes high dimensional!Sing model, the chaotic antisymmetric map depicted in Fig.
There is just one class of systems with many degree ot was placed on a square lattice and coupled to its four
freedom that is fairly well understood, namely, statistical
mechanics at and near thermal equilibrium. Unfortunately,
the systems studied in the field of space-time chaos are often
far from equilibrium so that the tools of equilibrium statisti-
cal mechanics may fail. Nevertheless, reduction to the rel-
evant degrees of freedom, sometimes called coarse graining,
may be equally successful in both areas. By elimination of
irrelevant degrees of freedom one maps the microscopic de-
terministic equation of motion to a stochastic model where
the noise captures the irrelevant information. Such a concept,
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The CML that is studied in this article is defined on a
numerical simulations indicate a phase transition if the couone-dimensional latticéchain of length N. Nearest neigh-
pling strength exceeds a critical valag;~0.82(cf. Fig. 1).  bors are coupled in a standard “diffusive” way with periodic
Extensive numerical simulatio4 1] indicate that the phase boundary conditions,
transition is continuous. However, it is doubtful whether the
transition belongs to the Ising universality class, because the
results for the critical exponents are inconclusive. In particu- .
lar, their values depend on whether the CML is updated syn- (1 — N ) )
chronously or asynchronously. One can summarize that the [TesOON=(1= T sx)+ 511X -0) + Tolxis0) -
phase transition of the Miller-Huse model is still far from (4)
being understood, in particular since no quantitative descrip- .
tion of the spin dynamics could be derived. In order to reachThe paramt_atee denotes the .couplmg stre_ngth. Because of
some progress in this direction we here introduce and inve he single site map and the diffusive coupling, the CWL;
tigate a slightly different model system with analytical meth- as th? synjmetrireya(—x) — T.fﬁ(x)'. Furthermore, trans-
ods. lation invariance on the one—dmensmnal Iatncg holds, be-
Section Il introduces our model as well as the setup of th&ause periodic boupdary conditions have begn |mposed.'
perturbation expansion. For the latter purpose transitions be- Since we are going _to perform a perturbatlon theory with
tween sets of a suitable partition are defined. These transfo| 9l <1, we first consider the CML withe=5=0. In this
tions are studied in detail in Sec. Il With these results, the"@S€ the model can be solved trivially. The nondeformed
bifurcation diagram of our model will be developed in Sec.2ntisymmetric tent mag, has the two attractors(—1)
IV and analytical expressions for the bifurcation lines are=L~1,0] andJ(+1)=[0,1]. ThereforeN uncoupled maps
calculated in perturbation theory. Section V is devoted to g0 have 2! coexisting attractors, each one Brdimensional
systematic coarse graining of the dynamics on the basis gube of edge length 1,
the partition just mentioned. On that level the dynamics is
described in terms of a master equation that corresponds to a lar=d(@y) X J(az) XX I(ay). ®)
p_articular CI‘?‘SS of_kint_atic Ising mo_dels. It COnStitPteS the bay,q distinguish these cubdg, by an N-dimensional index
sis for the investigation of transient behavior in Sec. Vl'vectora=(a o ay) wherea, e {—1,4+1}. The natu-
. . . . 1:82,...,N i y .
Finally, _the main results of thls work are summarlzeq. Theral measure on each cube is the Lebesgue measure. As we
appepd|xes are concemed with parts of the perturbation &XVill see, these cubes become important building blocks of
pansion, but more details can be found 1i2]. the perturbation theory and the starting point of a coarse
grained description of the CMIL, ;.
Il. THE MODEL From a dynamical system point of view we are mainly
a{'nterested in ergodic properties of the CML, i.e., the number
of coexisting attractors and their location for given small
parameters, 5. An important observation is that in the per-
turbative regime a typical orbit stays for many iterations
—2—x/a if xe[-1-a] within a cubel , before it possibly enters another cu
f(x)={ x/a if xe(—aa) 3) Therefore, in perturbation theory any attractor of the CML
o o yja if xe [’a 1 T, 5is a union of cubes,, if one neglects sets with volume
B O(e, ). Hence, the dynamics is sufficiently characterized by
transitionsl ,— 1 g between cubes.
termines whether transitions between the interyatsl,O] Of course wg.have to be more definite about v_vhat we
. mean by a transition. In order that a phase-space point can be
=J(—1) and[0,1]=:J(+1) are possible. Note that the mapped from a cubg, to a cubel ; (a# B) the image of

Miller-Huse map is obtained as a special cagesfs- 1. the former has to intersect the latter. Hence dhierlap set
The introduction ofa in Eq. (3) ensures that the modulus of

the derivative off 5 is constant on the whole interval. Figure Oap=Tesla)Nlg (6)

2 shows the functiorf ; for small positive and negativé.

For 6=0 the single site map has two coexisting attractorsplays an important role. A necessary condition for a point to
the intervals[—1,5] and[4§,1], whereas for6<0 only one  migrate froml, to | zis a nonempty overlap s€l, z. Since
attractor, the intervdl—1,1], is present. in perturbation theory the sat, 4(1,) is a weakly deformed

Tes[—1L+1N—[—1,+1]N,

Let us first consider the single site map. It consists of
deformed antisymmetric tent mafy, which is linear on
three subintervals df—1,1],

wherea:=1/(2— 6). Becausd 4(1)= 8, the parametes de-
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cubel,, the setO, g can at most have a volume of size
O(e,06). However, the condition on the overlap set is far
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nate is predominant for a finite humber of iterations, since
interactions with lattice sites further away are suppressed by

from being sufficient because one has to ensure that typicdhe small coupling strengte. More precisely, within first-
orbits can reach this set upon their itinerary. For that purpose@rder perturbation theory the overlap s€Xg g and their pre-

two additional conditions have to be imposed.
First, we have to ensure that points from the inner’pafrt

|, reach the overlap set. For that reason we consider the

preimages oD, g of various generation that are contained in

|,
T 5(Dap) ={XxelJTes(X) €Da gl
T 5(Dap) ={xeldTos(x)eT ¥ (0,0},

k=2,3,.... (7)
For some finitek the preimage set_ (9O, ) should inter-
sect the inner part df,, so that points from the inner part of
|, can reach the overlap s, 5.

The points of the seD,, z are near the surface of the cube
| g within a distance of orde©(e, ). The second condition
demands that points from a subsetf, ; with finite Le-
besgue measure reach the inner part of the dyldirectly
under further iteration. The two conditions for a transition

| ,— 1 g ensure that the transition is possible for a set of finite

Lebesgue measure that is located in the inner palf,of

lII. TRANSITIONS IN PERTURBATION THEORY

In what follows we consider the CMIT . ; for arbitrary
but fixed lattice sizeN. We would like to know which tran-
sitions| ,— 1z are possible for given parametes. In the

spirit of perturbation theory we confine ourselves to domi-

nant transitions. Those are transitions where the cupeasd
| g share an K —1)-dimensional surface. Then, the volume
of the overlap seD,, g can be greater by a factorelér 1/ 8]

in comparison to the case without a common surface. Con-

sequently, theN-dimensional index vectora and g differ
only in one component, the transition index. In such a
transitionl ,— 1z the x; coordinate of the phase space orbit

image sets can be approximated by the following product
sets(cf. Appendix A):

—_ 3

_ (N-3)
o p D“i—l“iawlvﬁi—lﬁiﬁiux

e R R A |

)

(3)
@124 1.8 1BiBi+1

T KDup=[TE] 740

><I(Nfi?»)

@@ A Ay

k=1. (8)

HereO) . 5 45 . denotes a three-dimensional pro-
i—1%1%+1Pi—-1PiPi+1

jection of the full overlap set that contains the coordinates

Xi_1, X, andx;; 1, andT&) denotes the map lattice fou

=3. The N—3) remaining coordinates are contained in the

(N—3)-dimensional cubd',® . Effectively,

we have herewith reduced the transition in a map lattice of

sizeN to a transition in a map lattice of size 3, becaubke (

—3) coordinates play only a spectator role. Put differently,

the CMLT_ ; already reaches its full complexity for=3, if

one stays in the perturbative regime.

For symmetry reasons one can identify three different

types of transitiond ,—14. In type (a) the three indices

a1, aj, anda; 4 are equal, e.g.,

|...,+1,+1,+1,...—’|...,+1,—1,+1,... .

In type (b) the two neighboring indiceg;_; and «;,; are
different from each other, e.g.,

|...,—1,+1,+1,...H|...,—1,—1,+1,... .

In type (c) the neighboring indicesy;_; and «;, 4 differ
from the transition index;, e.g.,

|...,+1,—1,+1,...—’|...,+1,+1,+1,... .

Transitions of typg(c) are inverse to those of tyda).
Because of the conditions mentioned in the last section,

{x} changes its sign. Transitions of higher order in whichansitions are possible only if the deformation is small

two or more coordinates simultaneously change their sigrnough, 5< 84;(e). Within perturbation theory we obtain
will not be considered in this article, because their rates argyy the different critical values

smaller by a factor of the orde&?(e,5) in comparison to the
dominant transitions.

In perturbation theory, for a dominant transition only the
neighboring indices of the transition index; ; and «; 1,
are relevant, because of the nearest-neighbor interaction
the mapT, ; [cf. Eq. (4)]. In addition, the influence of the
two neigboring coordinates,_; andx;, ; on thex; coordi-

For our perturbative treatment we define the inner part as the s
of all xe | , that have at least a small fixed positive distaddeom
the boundary, where the quantidydoes not depend on the expan-
sion parameterg and 8.

2€ 4e
type(@): 6,=0, typdb): 5,=— 3 type(c): d.=— 3

of ©

One might wonder why transitior(®) and(c) do not appear

for negatives above the critical value. The main reason is
that despite the existence of a nonempty overlap set, trajec-
tories do not reach this overlap since there exists a forbidden
r%agion in phase space called the “blind volume.” Points be-

Ffonging to the blind volume have no preimages themselves.

The blind volume is nonempty, since the map s is not
subjective for finite couplinge. The actual calculation of

2Gince fore= =0 the natural measure on each cube is the Le-Critical 6 values necessitates rather involved geometric con-

besgue measure, in the perturbative regime the mapdistributes
the points of an orbit rather uniformly within a cubg. Therefore,

structions in phase space, since one must determine the lo-
cation of the preimage se]’s;[é(Daﬁ) inl,. Hence, details

in determining the orbit dynamics it suffices to use topologicalare deferred to Appendix B. The smaller the deformation

methods such as the calculation of preimage sets.

parameters, the more transitions become possible as can be
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fore, each cubé, is an attractor so that there ar 2oex-
isting attractors.
Region 2 (-26/3<6<0). Only transition type(a) is al-
lowed. Hence, cubek, are attractors such that does not
contain three successive+1” or * —1” values. With a
8 combinatorial argument one can show that for long chains
(N>1) the number of coexisting attractors increases like

FIG. 3. Diagrammatic view of the bifurcation diagram for the [(1+ \/g)/z]N-
CML T, ; according to Eq(9). Numbers in the four parameter ~ Region 3 (-4€/3<5<—2¢/3). To determine the attractors
regions refer to the text. Gray shading indicates the type of coupling this region, it seems necessary to anticipate the coarse
in the corresponding kinetic Ising model, antiferromagnétight) graining of the CMLT, s, which will be discussed system-
or ferromagnetigdark) (cf. Sec. V. atically in Sec. V. Analogously to Eq2), we can view the
index vectora of a cubel, as a spin chain of length,
where+1 and—1 are the possible spin states on each lattice
site. In this way the three transition typé, (b), and(c)
translate into three different kinds of spin flips. For each spin

feasible for fixed negativé. Such an observation somehow chain one can define defects in the same way as in the anti-

contradicts intuitive reasoning about a “coupling” of lattice fer_romag'netlc !smg mocjel. A defedtl” ) oceurs if two
sites. The inhibition effect for transitions is caused by thenelghborlng spins are aligned, and no defect is present if the

existence of a “blind volume” in the cubk,, which grows spins_ point in opposi_te directions._ Then, the spin flips just
with e (cf. Appendix B @ mentioned translate into a dynamics of defects. In tige
At thié stage somé remarks about the accuracy of Ou}ransitions, two adjacent defects annihilate each other, e.g.,

perturbative approach seem to be in order. Since we neglect
transitions of higher order, our arguments are not rigorous. In
fact, for a real proof the complete absence of such transitions defects ina: ...1, 1,.-—..0, O,..

must be shown. For the case of two coupled méps,2,

such a step can be easily supplemertt#dAppendix Q and | type (b) transitions, one defect diffuses to a neighboring
we infer that one might be able to perform similar but moreattice site, e.g.,

involved computations in higher-dimensional cases too. Nev-

ertheless, even if these transitions are mathematically pos- spin chaine: ---+1,4+1-1;-—---+1,—-1,—1,--,

sible their effect may be small, e.g., taking a time scale ar-

gument into account. defects ine: ...1, 0,.—...0, 1,...

guessed from the geometry of the map. Fig. 2. On the
other hand, increasing coupling constantnhibits transi-
tions, since eventually only the transition of tyf@ remains

spin chaine;; ---+1,+1+1;--—---+1,—-1,+1,--,

In type (c) transitions, two adjacent defects are generated

IV. THE BIFURCATION SCENARIO simultaneously, e.g.,
Equation(9) determines four regions in the,5 param- spin chaina: ---+1,-1+1:--—---+1+1+1, -,
eter plane where different transitions are possibleFig. 3.
In crossing these lines a bifurcation occurs. Between differ- defects ine: ...0, O0,.—...1, 1,...

ent regions the number of coexisting attractors and their lo-

cations change. Determining attractors in the strict mathFor determination of the attractors in the present parameter
ematical sense just from the knowledge of the dominantegion we consider an orbix'} of the CML that performs
transitions faces some problems, however. For, neglectinguccessive transitions,— 4. Each transition changes the
sets with volume)( e, 5) a union of cube#, which an orbit  corresponding spin chaia and its defects. Since transitions
cannot leave through a dominant transition, is a candidate foof type (c) are forbidden, defects can diffuse and annihilate
attractor. But an orbit can possibly escape from this setn pairs only, and the number of defects decreases monotoni-
through a transition of higher order in perturbation theory.cally.

Then the setA would not be an attractor in a strict math-  If the size of the systerN is even, the chain contains an
ematical sense. However, one can put forward the followingeven number of defects. An orbfix'} migrates between
time-scale argument: in perturbation theory transitionscubesl, until all defects have annihilated each other. Then,
through which an orbit can leaw® occur on a rather large the orbit cannot execute any further transitions of ty@eor

time scale in comparison to the relatively fast dominant tran{b). Therefore, there are two attractors, the cubes
sitions through which the orbit is pulled back to the get (1 111 -1+1-1) and (141141, +41-1+41)- EX
again. Because of this intermittent dynamics, the/sét a  tensive numerical simulations indicate that fdreven, each
core region of a possibly bigger attractor, i.e., the get8e  cube I (1 1411 -1+1-1) and L1411 141, 11-14+1)

the carriers of most of the natural measure of these attractorsonstitutes an attractor in the strict sense, i.e., for

For brevity we will call these set& “attractors” in the fol- > —4¢/3 no additional transition of higher-order perturba-
lowing. tion theory is presenfcf. also Appendix ¢

If we neglect sets with volumé( e, 5) we can identify an For N odd, the number of defects i is odd. Conse-
attractorA with a union of cubeg,. quently, at the end of the transient dynamics one defect re-

Region 1 ¢=0). No transitionl ,— 1z is possible. There- mains. Since the defect can change its location via a transi-
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tion of type (b), the attractor is the union of all\2cubesl,, ~ Wherea; denotes the transition index. Hence the spin inter-
for which @ contains a single %1 +1” or “ — 1 —1”  action is local. N
sequence. (2) According to Egq.(11) the transition probabilities

Since in both cases the ratio of the volume of the attractolV(/8|@) do not depend oM. Therefore, they can be deter-
to the volume of its basin of attraction becomes very smalMined for small systems, e.g\.=3. N
for N>1 one expects long transients to occur. Section VI is  (3) Transitions of the three different types have probabili-
devoted to a more detailed study of the transient dynamicdi€S Wa, Wy, and wc, respectively, which depend on the
Our argument has used the assumption that different transarameters, é. If §is greater than the corresponding critical
tions are not correlated. We will come back to this problemvalue in Eq.(9), the respective transition probability strictly
in the next section. vanishes. On lowerin@, the transition probability increases

Region 4 §<—4e/3). All three transition types are pos- monotonically, as can pe shown by a rather subtle argument
sible. Therefore, an orbfix'} can visit every cubé,, so that  that uses the monotonic growth of the overlap Sgty.

there emerges one attractor that encompasses all cubes. ~ The dynamics resulting from the master equatio@) is
almost trivial in parameter regions 1 and 2, since at most a

spin flip of type(a) is possible. Regions 3 and 4 are more
interesting, because at least two different spin flips occur.
In coarse graining the CMIT . 5, one passes from orbits Since we are mainly interested in large systems, we confine
{x!, t=0,1,2 ...} in phase space to symbol or spin chainsourselves td\N even in what follows.
{a!, t=0,1,2...}. The spin chaire! just indicates the cube ~ In region 3 spin flips of types(a) and (b) are
that contains the phase-space poinat timet [cf. Eq.(2)].  possible. On the coarse-grained level the attractors
If an orbit of the CML performs a transitioh,— 14, the lr1-141-1,-1401-1) and T q 141 41,-1,41) are
state of the spin chain changes framto 8. Since in pertur- viewed as the two ground states of the antiferromagnetic
bation theory an orbit typically circulates for many iterationsIsing model. Hence, the ergodic dynamics of the CWIL,
within a cubel ,, the sequencin!, t=0,1,2 ...} has acon- corresponds to an antiferromagnetic Ising model at zero tem-
stant value for a long time before a spin flip occurs. Alto-perature. In parameter region 4 all three spin flips are pos-
gether, the CML is described bystochasticspin dynamics.  sible. The(unique stationary distribution of the master equa-
First we argue that the spin dynamics is Markovian for thetion can be calculated with the ansatz that the weight of each
following reasons. statea solely depends on the number of defects. The result

(1) Two successive transitiong—1 g andl g—1, are un-

V. COARSE GRAINING OF THE CML

N
correlated. In the perturbative regime an orbit performs a sa_ | We Yzt g N
highly chaotic motion within the cubk, for many iterations Pa = W_a = zex BJ; ajaii1| (12)
before the transition to the cule occurs. Therefore, the
memory of the preceding transitid—1 4 is lost. clearly can be cast into the form of a canonical distribution

(2) A transitionl ,—1 g is equally probable for each itera- for a nearest neighbor coupled Ising chain. Har@nd Z

tion step. For a transition the orbit poikt must hit a char-  genote the normalization constants and for the temperature
acteristic set in the inner part of the culygwhich consists of  the relation

preimages of the overlap, g. During its stay within the

cubel , the orbit is distributed uniformly within,,, since for L[ We

e= 6=0 the natural measure dp is the Lebesgue measure. BI=zIn W (13
Consequently, the probability for the orbit to hit the charac- 2

teristic set is independent of time. follows. TakingJ with modulus 1 the temperature depends

Since the spin dynamics is Markovian at least approxi-on the ratio of the transition probabilities for generation and
mately, the probabilityp,(t) that the spin chain is in sta®  annihilation of two defects. It is finite throughout region 4.
at timet obeys a master equation with transition probabilitieSEerromagnetic coupling)=+1, is obtained for . /w,)

w(pla) for a spin flipa— B, >1, whereas in the opposite case,(w,)<1 antiferromag-
netic coupling,J=—1, follows. Both cases are realized in
Palt+1)=pa()+ > [W(alB)pst) —W(Bl@)pa(t)]. the present parameter region, as can be seen in Fig. 3. Here,
BFa the transition probabilities/, andw, were obtained numeri-

(100  cally by analyzing the transitions of a very long orbit of the
CML with N=3. Finally, it is easy to show that the station-

In perturbation theory three types of spin flips occur. Asgry distribution(12) of Eq. (10) obeys detailed balance:
already stated above, only a single spin flips during the el-

ementary procesa— . From the study of the underlying w(Bla)pSt=w(af ﬂ)p;}tat,
CML T, s one can infer the following properties of the tran-
sition probabilitiesw( 8| @). although the underlying CML describes a nonequilibrium

(1) Because of the nearest-neighbor coupling in E). process on the microscopic level.
and the direct product propert@) in the perturbative re-
gime, the transition probabilities(8|a) depend on the three VI. TRANSIENT DYNAMICS OF THE CML
neighboring spins only,

As mentioned above, the transient dynamics of the

w(Bla)=w®(a;_18iaj 1|ai_1aiaii1), (1)  CML is most interesting in parameter region 3 for
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which  the attractors I(;; 1411 -1+1-1) and VIl. SUMMARY

l(141-1+1..41-141) have large basins of attraction for v pave introduced a coupled map lattice which was con-

large N. The mean transient timéT) can be determined by . .
averaging the time until an orbit reaches one of the two at_structed in analogy to the Miller-Huse model. By a perturba

L o o tion expansion for weak coupling and in the vicinity of a
tractors over many random initial conditions, i.e., initial con- . . . . .
ditions distributed according to the Lebesgue measure. Thg mmetry-breaking bifurcation of the single site map, non-
numerical simulation indica?es a uadraticgincrease Witﬁ therivial dynamical behavior has been investigated. Our ap-
) q proach was based on analyzing the geometric properties in
system size, " .
phase space. Transitions between certain cubes that are the
(T)=N2  (N>1). (14) building blocks of a coarse-grained description have been

computed. A global bifurcation of the dynamics occurs if a

Such a law can be understood from the coarse-grained poiff@nsition becomes allowed or forbidden by a change of the
of view. In parameter region 3 the spin flips of tygesand ~ Parameters. Four parameter regions vv_|th different ergo@c
(b) are allowed, which cause the annihilation of two defects®&havior could be identified. As a surprising and counterin-
and the diffusion of one defect, respectively. Overall, thetuitive feature of our map lattice, we mention that increasing
transient dynamics of the CML corresponds to a relaxatiorn€ spatial coupling inhibits transitions and stabilizes single
process toward one of the two ground states. Since diffusiofUP€S as attractors. As a consequence, the coupling acts
is important for the relaxation the time scale grows with theSOMmehow antiferromagnetically on a coarse-grained level.
second power of the length scale, i.e., the system size. When we perform a coarse graining of the map lattice the
To be more definite and in order to derive E@4) for- resulting symbol or spin dynamlgs bepomes a kinetic Ising
mally, we recall that the spin dynamics induced by the magnedel. We have been able to identify parameter regions
lattice constitutes &inetic Ising modetith local spin flips. ~Where our dynamical system can be mapped to a finite tem-
Models of this type have been introduced by Glauber in hidérature nearest-neighbor coupled Ising chain. Depending on
celebrated articl¢13] (see alsd14]). So the coarse-grained the original parametgrs of the system_, ferromagnetic or anti-
dynamics of the CMLT_ ; belongs to a well-studied class of ferromagnetic coupling can be realized, but the ordered
models. For the case of zero temperature ie.=0, an phase at zero temperature is always in the antiferromagnetic
exact analytical solution is available if an additional relation"®9ime. The coarse-grained viewpoint also sheds some light

for the two remaining transition probabilities is imposed: ~ ©N the transient dynamics of the map lattice since the tran-
sients correspond to a relaxation process in the kinetic Ising

W= 2w, . (15) ~ model. Therefore, the transient behavior of the CML is re-

lated to a nonequilibrium process of statistical physics.
Such a condition holds only on a subset of parameter region Within our approach we have successfully linked the dy-
3, namely, on a line of,s values. One can show with the namics of a coupled map lattice to properties of a kinetic
help of results for the temporal evolution of correlation func-1sing model on analytical grounds. Of course our approach is

tions that the mean numbey of defects in the spin chain Not mathematically rigorous, but we have good indications
obeys that the results are valid at least in the perturbative regime.

Comparison with numerical simulations shows that the lead-

1 N ing order of perturbation theory is a good description for
Ny~ —=—F, t>L1 (16)  parameter values, |§|<5Xx10 2.
V81w, Vit For further studies the adaptation of the method to

) , coupled maps on a two-dimensional lattice seems desirable,
If one changes the system size fréfito kN the timet has to  gjnce here also finite temperature phase transitions are pos-

be scaled by a factde® in order to reach the same number of gjhle. This would constitute a further step in the understand-

defects. Since the mean transient tifi¢ determines the jng of phase transitions in coupled map lattices as exempli-
scale for the annihilation of all defects, the scale argumenfieq by the Miller-Huse model.

implies relation(14).

When one relaxes conditidid5) between transition prob-
abilities the quadratic growth of the transient time wihn
Eq. (14) still holds as numerical simulations indicate. Such  We want to derive Eq(8) for symbol sequencea, B
an observation is in accordance with the theory of dynamicalyith a;=p; for j#i and &;# B;. First, we recall that the

critical phenomen&l5]. The latter implies universal scaling single site mayf 5 is affine on the four intervaléct. Fig. 2):
laws for relaxation phenomena at the critical point. At zero

APPENDIX A

temperature the dynamics of a one-dimensional kinetic Ising K(-2):=[—-1,—a], K(—1):=[—a,0],

model is critical and the decay of defects is governed by the

dynamical critical exponer, K(1):=[0a], K(2):=[a,1]. (A1)
(M)~ tLI‘E 17) Consequently, the map, ;s is affine on the ¥ cuboids,

Sy=K(y1) XK(y2) X+ XK(yn),
zequals 2 for kinetic Ising models where the order parameter
is not conservefl15,16. Consequently, Eq14) holds for a vi=(y2,Y2,.-.,vyn) With  yie{—2—-1,+1+2}.
large set of parameter values in region 3. (A2)
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Each cubd , contains 2 cuboidsS,. The image of a cuboid
underT, s is a parallelepiped,

P'y::Te,ﬁ(S'y)’ (A3)
which is a weakly deformed cubk, for S,Cl,, because
Te=s5-0(S,) =1, holds and we are in the perturbative regime
€,|8/<1. The distances between the corner®gfand ofl ,
are of the ordeO(¢, d).

The overlap seD,, g as defined in Eq(6) then reads

DﬂyB: U (Pyﬂlﬂ)

{rlS,Clyt

(Ad)

The intersection of a parallelepipétl, with | ; can be writ-
ten as

N

Xe Sy/\jljl (B[ T s(x)])= 1} )

Pyﬂlﬁz TEYE(X)

(A5)
where 6(x) denotes the Heaviside function.
SinceBj=a; for j#i we have
0(Bi[Tes(X)]p=1 (A6)

providedx; has at least a distance of ord8(e, 5) from the
end points of the interva(y;). Therefore, the sdiA5) can
be approximated by

Py g={Ts(X)|xe S, NOBI[ T s(x)])=1} (A7)

in leading order of perturbation theory. The remaining
Heaviside function in Eq(A7) only depends on the coordi-
natesx;_q, X;, andx;, ; because of the local coupling of the
CML T, ;. Therefore, and sinc®,, is a weakly deformed
cubel ,, we obtain in the same order of approximation

— T3 (3«3 - a3
PN g={T 5(x*)[x €Sy v,
3 3 — N-3
NOBITEON =X ey
—(p® (3) (N=3)
(P“Vi—17i7i+1mIﬁi—lﬁiﬁiu)xI“l“2"'“i—2“i+2"'0‘N'

(A8)
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++

+-

FIG. 4. Parallelogran?; =T, 5(S;) and its intersection with the
squarel . .

structure of a direct product in E¢8). Finally, it can be
easily shown that the blind volum, of the cubel , can
also be approximated by a direct product of the form as in

Eq. (8).

APPENDIX B

In order to illustrate the main steps for the calculation of
the critical valuess,(e) we focus on the cagd=2 and the
transitionl . . —1__, . Generalizations tdi>2 and different
transitions are almost obvious, but require some tedious
though elementary computatiohk2].

For calculating the overlap s¢i_, ., we introduce the
following shorthand notation for the indices of the rectangles
in Eq. (A2):

S=S_21, S=S_3,

S3:=S_11, S4=S_1o.

(B1)

With the parallelogramP;:=T. 5(S;) the overlap se(A4)
reads

4

D—+,++:U(Pim|++)- (B2)
i=1

Within first order P;Nl, . and P,Nl,, as well as
Ps;NI,., andP,NI1, , are equal to each otheP; and the
intersectionP;N1 ., are shown in Fig. 4. The area of the

Here the superscript indicates that the quantities ardatter triangular set ise/2 in first order. The intersection

determined by a map lattice of sizeN=3 with
xX®=(x;_1,X ,Xi+1). The (N—3)-dimensional cube
13 .., takes the remaining coordinates with
172 i—2%i+2 N
je{i—1,,i+1} into account.
If one approximates the map, ; by the simplified map

[T a1 = (L= ) )+ ST 2) + Fx,42)],

[Te,ﬁ(x)]j:fﬁ(xj)a (A9)

one arrives at the resulA8) at once. One can use the sim-
plified mapfwS for the calculation of the preimage sét§§

(Oa,p) in leading-order perturbation theory. SinCNEeyg
couples only the coordinates_4, x;, andx;, 1, in this ap-
proximation also the preimage seTgft‘; (Oq,p) have the

Vi,

P.NI ., is obtained by shifting the just mentioned triangle
by an amount- 6.

The preimage set of the overlab;(% (O-4 +4), isdis-
played in Fig. 5 where we restrict the parameter range to
—2e<6<0 for simplicity. For calculating preimages of
higher order the so called “blind areaB_, comes into
play, i.e., the set of points ih_ ., that do not have preimages
with respect to the maf.s. The components ofr;(ls
(O_4+ +4),inS; andS, are contained in the subsebf the
blind areaB _ , (cf. Fig. 5. In first order the width of the set
T is given by the expression

bT(Xz):E+ €X5, Xze[O,l]. (83)
For convenience in calculating preimages of higher order
we first concentrate on the right rectangi®sand S,. De-

fining the generations of ordérby
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Nl ce. (e K fh(xo)
1 AT B RW(xp)= — €D, —=r, x,e[0,1]. B7
CRCIIRLIEN o, )N s, (x)=—e2 —7 2€[01. (B
/ €,¢ b e
7 (ko 1)/2
% I For k odd these curves admif2 1’2 absolute extrema at
- 7 =F .
T (0., )N S, g T\, )N S (v
_________________ Xmine[z 1+ 2 4__]]') ije{_1:+1}-
812 j=1
€
. _1 . ) i=12,...(k=1)/2 (B8)
FIG. 5. Preimage sét_ 5 (O_, ;) and its four components in
the rectangle§;, (—2e<46<0). Additionally, the blind are®
and its subseT [cf. Eq. (B3)] are displayed in gray. with height
_ (k—1)/2
GP=T_ 5O | 1 )N(S3USy), € 1
5,6( +,++ (S3 4) R(k)(xmm):_E IZ:O ZI_ (Bg)

GWi={xe (S3USy)|Ts(x) e G* DY, k=23,...,
(B4 In the limitk—c the setS¢ has a fractal boundary, since its

construction is analogous to the famous Koch’s cUyi/é.

Fig. 6 reveals a beautiful recursive structure of these sets. I? . o .
. . . he thickn f th follow ily from Eq.(B
order to describe this structure analytically we remark that up € thickness of the ség follows easily fro a.(B9),

to first order it is sufficient to compute preimages with re- 2¢
spect to a simplified mafef. Eq. (A9)] h(2&):=sup{|x,||xe 2} = 3 (B10)

[Te.s(X)]1= 2%+ efo(Xy), A generationG® has preimage§“*) not only in the

right rectanglesS; andS,, but also in the left rectangle$;

[Tes0012="Fo(Xp). (BS)  ands, (cf. Fig. 6),
Then the following properties of the generatid®&’, which HO=T X0, 4 )N(SINSy),
are inherent in Fig. 6, are easily obtainét. The first gen- © ’
erationG? consists of two triangles with verticé€, 0), (0, HO = {xe ($,N1S,)|T. 5x) e GK D}, k=23, ... .
1/2), (— €/2,1/2)} and{[(0, 1), (0, 1/2, (—€/2,1/2]}, re- ! e ’ o (B11)

spectively.(2) A generationGX) encompasses*@riangles,
each of them having the same area. The area shrinks by ®o reveal the relation betwedd® andH® analytically we
factor 4 if one passes fro8"~ % to G!. (3) Two neigh-  just note that for a poinye G, Egs.(B4) and (B11)
boring triangles of the same generation share a corner or igply that
side with length of ordee. (4) The unions ¥ :=uk_,GM is
a simply connected set. Tes(X)=T s(x)=yeG* P xeGM x eHX.

To determine the boundary é)‘g‘) we consider its height

function Then to first order

RM(x,) ==inf{xy| (X1 ,X,) € S¥1. (B6) X1+1=—=62—X1, X5=X; (B12

follows. Hence, the seil(¥ is obtained fromG® by a re-
flection and an additional offset of 6/2 (cf. Fig. 6. The
same property follows, of course, for the limi§, and>¢ .

SinceR** Y is mapped orR¥ by the simplified maf . we
get the representation

11 06"/ HY "
G”/ H® 3iCB, (B13)
B c®/ H? holds, no further preimages of the overlap get, ., ap-

pear, and the unio® U}, encompasses all preimages.
Consequently, the transition. . — 1, , is not possible, be-
cause all preimages of the overlap set are located near the
edge ofl _, . Therefore, conditioriB13) gives the clue for

the determination ob(¢€).

0 According to Eqs(B12) and (B10) the thickness oB.}
bt reads
—0/2 0
FIG. 6. The first three generatio8W(H™) near the right oy n oy _ f+ ﬁ
(left) odgo ofl . h(25) :=sup{l+x4|xe 3} >t 3 (B14)
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T 0., ) B

X T<B_,

N I

-+
13 w
2B, -1
0
g 0
_i/i I+—
€

FIG. 8. Overlap seD_, ,_ and its preimagé’;(ls(f),ﬁ%).
FIG. 7. Diagrammatic view of the set}; and the subset
TCB_, of the blind volume for6< . (€).
blind volume determines whether all preimages of the over-
lap set are located only near the edge of the cube. Conse-

At the critical valuedgi(€) one peak at the boundary with quently, the existence of the blind volume influences the nu-
maximal height collides with the right border of the set yerical value of6.u(€) significantly.

TCB_, (cf. Fig. 7. Since the boundary of the blind area
according to Eq(B3) has a finite slope, the peak with the
smallest x, coordinate crosses the right boundary of

first. This can be shown rigorously with the inequality APPENDIX C

In this appendix we would like to show that fbr=2 the
cubed _ . andl , _ contain attractors in the strict mathemati-

According to Eq.(B8) this peak is located at,= 1/3. Then cal sense, if6>—4e€/3. Because of symmetry we can con-

sup{Xy|(Xq,Xz) € Tt <supXq|(x1,1/3) e S+ €(X— 3).

Egs.(B14) and (B3) yield centrate on the cubke_ . .In Appendix B we have shown
that the (dominanj transitionsl _,—1,, and|_,—I__
Ocritl €) are forbidden, as long a&> .y~ —4€/3. What remains to

2

s =h(X)=br(x,=1/3)=3¢ (B15 pe done is to show that the off diagonal transitibn,
—1, _ also does not appear.

and consequently we arrive at If 6<0 there exists a nonempty overlap set. Considering
. the four rectangles ih_, on which the CMLT, s is linear
Ocri( €)= —3€. (B16)  [cf. Eq. (A2)], only the image of the rectang® ,p:=[ — 1,

—a]X[a,l] intersects the squaite _ for §<0.
Figure 8 displays this situation where the parallelogram
P_2=T. s(S_22) and the overlap set

In order to show that the transitidn , —1, . is possible
for 6<d.u(€) the two conditions mentioned at the end of
Sec. Il have to be checked. SinEg\B_ , is nonempty for
6<dgil€), there exists an open neighborhood (Xfl'()—(i) O, =P NI, (C1)
=(—1,3) which is contained within the preimage s'EzEtﬁ0
(O_4 ;) for a particular valug,. The next preimages are are shown. The overlap set has extensior-d'in the direc-
located neaf—1/2, 1/6 and(—1/2, 5/6 and hence enter the tions of both coordinate axes and hence an aré&. Note
inner part of the squark_ . . For higher generations again that this area is a factor of the ordél(e, 5) smaller than
four preimages exist. Therefore, it is plausible—and thethose of the overlap setS_, .. andO_, __, which be-
more intricate considerations pf2] confirm it—that the set long to perturbatively dominant transitions.

UEZOT;‘; (O_4 ++) has a substantial Lebesgue measure. The overlap setC1l) alone does not ensure a transition
For the second transition criterion we have to check whether_ . —1, _. In fact we show that phase-space trajectories do
the points that are mapped into the over@p . ., can not reach this set, so that the transition does not appear.
migrate into the inner part df, . under further iteration. A Since we are considering a map with a finite coupling
point xe O_, ,, has a positivex; coordinate of order >0, trajectories do not fill the whole phase spacel,1]?
O(€). If one considers the evolution of tixg coordinatgcf.  but only the subseT, 4([—1,1]?)C[—1,1]% In particular,

Eq. (B5)], its value grows for most pointse O_, ., under  points close to the upper left corner bf , are not visited.
further iteration, until it reaches a value of order 1. There-This forbidden domain, previously called the blind volume,
fore, the iterates reach the inner partlof, after a finite  constitutes the reason why the off-diagonal transition does
number of steps. not appear even beyond the perturbation theory.

In conclusion, the transition_, —1,_ becomes possible To put the argument on a formal level, we construct the
for 6<&.(€). Computation for other transitions or a CML preimage sets of the overlap set within the square. The
with N=3 follows the same lines. We stress that the mainfirst generation sefl';(lS (O_+ +-), is located near the cor-
steps consist in the calculation of images and preimages afer (=1, 1) of | _, and has sides of lengtls — 6/2 (cf. Fig.
overlap sets. The location of the preimage sets relative to th). As also shown in this figure, the blind arBa | of the
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squarel _ . is also located there and contains a square witlthe squard _ ., so that one criterion for the transitidn .

side length 2. Therefore, the preimage s'é[; (O_+ 4+2), —1|,_ is not obeyed and the transition is impossible for
is contained in the blind area, as long&s —4e. Hence in  6>—4e.

this parameter regime the overlap set has no preimage sets Summarizing, none of the transitiods , —1, with «

T;§ (O-4 +-), with k=2, because points belonging to the e {— —,+ +,+ —} are possible fo6> 6~ —4€/3. There-
blind area have no preimages themselves. In particular, thi@re, in this parameter region attractors in the strict sense
preimages of the overlap set do not intersect the inner part aeside within the squards , andl, _.
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